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Under the assumption that the horizontal scales of the flow of a stratified fluid 
are much greater than the vertical scale, it  can be shown that the pressure dis- 
tribution in the fluid is nearly hydrostatic and that the solution for steady flows 
can be reduced to the solution of a non-linear partial differential equation with 
only horizontal co-ordinates as the space variables. The theory built on the basic 
assumption is the shallow-water theory for stratified fluids. Transformations are 
explicitly given with which a class of solutions for steady three-dimensional 
flows of a fluid of arbitrary stratification, continuous or discontinuous, issuing 
from a large reservoir can be found from a corresponding solution for a homo- 
geneous fluid, provided a free surface is present and the shallow-water theory is 
applicable. A few examples of exact solutions according to the shallow-water 
theory are given and the parallel flow in a. horizontal canal issuing from a large 
reservoir with the same horizontal bottom, which has some bearing on previous 
works on stratified flows, is discussed. But it is emphasized that the class is a very 
special one and that there are other solutions not belonging to this class. The 
conditions under which a solution belonging to this class is valid are discussed. 

1. Introduction 
The equations governing large-amplitude three-dimensional steady flows of a 

stratified fluid have been presented in a previous paper (Yih 1967). Due to the 
non-linearity and complexity of these equations not a single solution for a truly 
three-dimensional case is known. If, however, the vertical scale of a stratified 
liquid is small compared with a representative horizontal scale, the pressure 
distribution at  any section is essentially hydrostatic. As a consequence the 
number of the spatial variables can be reduced from three to two, although the 
flow treated is still truly three-dimensional. The theory built on the basic assump- 
tion of small vertical scale is the so-called shallow-water theory. In  this paper we 
shall show that, whenever the shallow-water theory assumption is valid, a class 
of exact solutions exists for steady flows of a stratified fluid. The principal result 
is that to any solution by the shallow-water theory for a steady flow of a homo- 
geneous fluid there corresponds a solution for a steady flow of a stratified fluid 
with arbitrary stratification, the velocity field for the latter being obtained from 
that for the former by a transformation explicitly dependent on the density 
stratification, and that steady stratified flows issuing from a large reservoir enjoy 
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this correspondence, provided the assumptions underlying the shallow-water 
theory are satisfied and the downstream conditions allow it. 

2. The basic assumptions and their principal consequence 

diffusive fluid of variable density. For such a fluid the equations of motion are 
We restrict our attention to the case of an incompressible, inviscid and non- 

DU ap 
Dt ax’ P- = -- 

DV ap 

DW ap 

P g t  = -1J’ 

p- Dt = -ax -gp. (3) 

In  these equations x ,  y and z are Cartesian co-ordinates; u, v and w are velocity 
components in the directions of increasing x, y and z, respectively; p is the pres- 
sure, p the density, g the gravitational acceleration, which is in the direction of 
decreasing z, and ~ a a a  a 

%+u-+V-+w- ax ay  ax .  

The equation of continuity is 

and the equation of incompressibility is 

Dp/Dt = 0, 

in virtue of which the equation of continuity can be written as 
14) 

(5) 
au av aw 
ax ay a Z  
-+-+- = 0. 

We shall consider flows of which u and v are of the order of a representative 
velocity V,, and the representative horizontal length is L. Furthermore, for 

f = O(E)  and af/at = O(wE),  unsteady flows, if 

in which f as well as E is any variable, we shall say that a/at is of the order of o, 
for convenience. 

If we denote by c the vertical displacement of a fluid particle from its upstream 
elevation or mean elevation, then 

ac ac ac 
at ax ay  -+u-+v- = w. 

The basic assumption of the shallow-water theory is 
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in which h is the depth of the fluid and a function of x ,  y and t .  Since [ < h, (i) 
implies that ([/:/L)2 < c2 4 1. We shall assume that the bottom is flat and 
situated at z = 0. Integration of ( 5 )  with respect to z then produces the result 

w = O(E&), (7 )  

in which V, is a representative velocity. Now the second and third terms in (6) 
are also O( eV,) ; hence 

a[/at = O ( E ~ )  and apt  = O(V,/L). 

Substituting (7) into (3) and ignoring quantities of order B or of higher order in E ,  

we then obtain 
aP - -gP or P=/zhgPdz ,  (8) - -  
az 

if the free surface is present and given by 

z = h(x,  y ,  t ) .  (9) 

In  this paper we assume that a free surface is present. Equation (8) is the prin- 
cipal consequence of (i). Subsequent developments will be for steady flows only. 

3. Shallow-water theory for stratified liquids in steady flow 
For the development of the shallow-water theory for stratified fluids in steady 

flow, a presentation of the shallow-water theory for a homogeneous liquid is 
essential, Consider a homogeneous fluid with a free surface flowing above a 
horizontal bed. The depth will be denoted by h. If we assume the upstream flow 
to be irrotational, or, more generally, the flow to have been started from rest, 
then the whole flow is irrotational, since the fluid is inviscid and the density 
constant. Since (7) is still valid under the basic assumption (i), the equations of 
irrotationality are, if U and V denote u and v for homogeneous fluids, 

if quantities of order 6 are neglected. The first two equations in (10) state simply 
that U and V are independent of z and the third allows the use of a velocity 
potential 0 in terms of which 

u = a q a x ,  v = aayay .  (11) 

The equation of continuity is then, as can be shown in the usual way by taking 
as the control surface the surface formed by the bottom, the free surface and the 
lateral surface of a vertical prism of cross-section dxdy, 

The Bernoulli equation is, with h, denoting the depth at  a stagnation point or in 
a large reservoir, u2 + v 2  + 2gh = 2gh,, (13) 
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since the neglected term w2 is of the order of e2. Instead of the equations of motion, 
we can simply use (13), which can be derived from them. Substitution of (13) 
into (12) produces 

( c"~~)u~-uV(uy+~)+(c~-v~)vy= 0, (14) 

in which c2 = gh. (15) 
In  virtue of (l l) ,  (14) can be written as 

in which subscripts indicate partial differentiation. The c2 in (14) and (16) can 
be expressed in terms of U and V by the use of (13), or in terms of CD in the 
further use of (11).  It was Riabouchinsky (1932) who fbst pointed out the 
analogy between (16) and the equation governing the velocity potential of two- 
dimensional irrotational flows of a homentropic inviscid gas. Equation (16) is, as 
Riabouchinsky pointed out, identical to the equation governing two-dimensional 
irrotational motion of a homentropic gas obeying the law for isentropic change 
of state p / p y  = constant, with y = 2. 

The equation in gas dynamics corresponding to (16) has been studied by Molen- 
broek (1890) and more fruitfully by Chaplygin (1904), both of whom used 
hodographic variables as independent variables. 

Now, for the motion of a stratified liquid started from rest, vorticity will be 
created. But the vortex lines will lie in surfaces of constant density, so tha t  the 
vorticity component normal to a surface of constant density is zero, as a direct 
consequence of the Kelvin theorem (see Yih 1965, pp. 13-14), Remembering the 
assumption (i), thismeans that, with terms of order €neglected, the third equation 
in (10) still stands. Thus we have irrotationality in a constant-density surface, 
when the motion is viewed from above. This does not save (11) for the whole 
field of flow, but does save it for a constant-density surface. As to the first two 
equations in ( 10) , they are certainly no longer valid. 

We shall now show that, if the shallow-water assumption is satisfied, steady 
flow of a stratified fluid with a free surface issuing from a large reservoir can, 
although it does not necessarily, have a flow pattern exactly like that of a homo- 
geneous fluid with a free surface, issuing from the same reservoir into the same 
channel. Since a flow having such a pattern is far from the only kind of flow a 
stratified fluid can have, it is sufficient to show that such a flow is dynamically 
permissible, i.e. it  is consistent with the only two equations governing the flow: 
the equation of continuity and the Bernoulli equation. 

We shall, then, assume that for every constant-density surface 

in which ho is the depth far upstream (in the reservoir), c,, is the reservoir elevation 
of the constant-density surface, which has the elevation C(s, y) at  other places, 
and h(z,  y) the depth at any (x, y). The pressure at any point is, under the shallow- 
water assumption, 
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At any jixed values of x and y ,  z’ can be identified with c and dz‘ with dQ and a 
change in the value in [ involves a change in the value of p. Hence (18) can be 

in which the validity of the second equality sign depends on (17). 

(2, y ,  z )  and a point far upstream on the same constant-density surface is 
Whether or not (17) is assumed, the Bernoulli equation written for any point 

in which 

If (17) is assumed, (20) and (21) permit (22) to be written as 

u2 + v2 + 2ghB( p) = 2g&B( p) , ( 2 2 )  

in which B(P) = C(P)/29ho. (23) 

(24) 

(22 )  becomes U 2 +  V2++gh = Zgh,,, ( 2 5 )  

If we now write (u, v )  = 4 p )  ( u7 v 1, h2 = B(p)  9 

the same as (13). That is, if the Bernoulli equation is satisfied by the flow of a 
homogeneous fluid, it is also satisfied by a stratified flow with the same flow 
pattern and a velocity distribution given by (24). 

Note that, for steady flows, (6) gives 

(27) 
ac ac 
ax ay 

for a homogeneous fluid and w = u - + v - 

for a stratified fluid. Hence (24) also implies 

Then, in virtue of (4), ( 5 )  is satisfied if 

is satisfied, provided the velocity distribution in the stratified fluid is given by 
(24). The consistency of (17) and (24) with the equation of continuity and with 
the dynamical equations is thus established, and we state the 

Theorem: So long as the shallow-water theory is valid, a class of steady strati$ed 
flows with a free surface originated from rest can be found corresponding to each 
irrotational steady free-surface frows of a homogeneous &id originated from rest. 
The mapping i s  by the use of (24). 

Note that even in the presence of a stagnant layer of fluid the $owing part 
of the stream can still obey the theorem. In other words, the theorem is true 
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wherever the basic assumptions of the shallow-water theory are fulfilled and a 
free surface or stagnant upper layer is present. We shall now present a few 
examples. Examples 3 and 4 illustrate flows with a stagnant layer. 

Example 1. Gravity jets of a strati$ed fluid 

With reference to figure 1, the water level ( A )  behind the vertical wall far from 
the opening is higher than the water level in front of the vertical wall, which is 
flat except in the jet issuing from the opening. The curved free surface of the jet 

FIGURE 1. A perspective view of the gravity jet. The line A indicates the level of the free 
surface far upstream. The flat part of the intersection B-B of the free surface with a 
vertical plane is on the surface of the stagnant liquid surrounding the jet. There are three 
other lines like B-B in the figure. Their flat parts are at the same level as the flat part of 
B-B. The fluid may be homogeneous or stratified. 

is higher than the flat level (straight part of B-B) of the dead water surrounding 
it, but approaches that level very far downstream. The bottom is horizontal 
throughout and the depth of water is assumed to be small compared with the 
opening in the wall. The problem for a homentropic gas was solved by Chaplygin 
(1904), and Ferguson & Lighthill (1947) calculated the coefficient of contraction 
for y = 1-4. In the shallow-water case y = 2,  whereas for the classical Kirchhoff 
jet y = CQ. The coefficient of contraction C, is the ratio of the asymptotic width 
of the jet to the opening of the wall. For the Kirchhoff jet 

7-r c,=-- - 0.611. 
7T+2 

For the Chaplygin jet Ferguson & Lighthill (1947) gave C, for y = 1.4 and various 

(30) 
values of 

71 = 2, P2 
qmllx 
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q being the speed along the boundary of the jet and qmax the maximum speed 
attainable by the gas. In  our case y = 2 and qmax is now the maximum speed 
attainable by the liquid. 

A calculation by Mr C. H. Li gives, for y = 2 ,  

0 0.02 0.04 0.06 0.08 0-10 0.12 0.14 - 71 
C, n/(n+2) 0.6156 0.6205 0.6255 0.6307 0‘6362 0.6419 0.6479 - 

71 0.16 0.20 0.22 0.24 0.26 0.28 0.30 0.32 f 
C, 0,6542 0.6677 0.6749 0.6825 0.6904 0.6987 0.7075 0.7167 0.7230 

The maximum value of 71 for subcritical flow is (y - l)/(y + 1)  = & for y = 2 .  
For a stratified fluid with any stratification, we need (24) to obtain the velocity 

distribution. But the coefficient of contraction is the same if the flow pattern 
remains unchanged. It is tacitly assumed that, if the density far upstream is 
given by p = f ( x ) ,  that in the stagnant liquid surrounding the jet is given by 
p = f (rz),  with r equal to the ratio of the upstream depth to the depth far down- 
stream, if the flow pattern is to remain the same as for a homogeneous liquid. 
This can be achieved by having two large basins divided by the wall, filling them 
while keeping the sluice gate open, then closing the gate and enlarging in any 
way the area of the downstream basin, thus lowering the levels of the constant- 
density surfaces proportionally. When the gate is then opened, the condition 
at  the edge of the jet is just what is needed for the solution to be physically 
relevant. 

Example 2. Strati$ed flow in a channel expansion 

Figure 2 (a ,  b )  shows the plan and elevation (at the centre plane) views of a homo- 
geneous liquid flowing through a channel supercritically, i.e. with the velocity 
everywhere greater than the local speed of long waves of the gravest mode. 
Equation (16) is now entirely hyperbolic and the solution by the use of the method 
of characteristics is well known. For a stratified liquid with any stratification, 
again (24) provided the corresponding solution. 

Example 3. Gravity jets with an overlying stagnant layer 

In  figure 3, if the flowing layer is homogeneous and has the constant density pi, 
the gravity jet will be identical to the gravity jet without an overlying layer in 
every respect, except that the velocity is reduced by the factor (pt-p’)/pt, p’ 
being the density of the overlying layer. This can be easily seen, since the Bernoulli 
equation is now 

U‘2 + V’2 + 2g’h = 2g’h0, (31) 

in which Pt - P’ g )  g’ = ~ 

P1 
and the primes on U and V are to indicate the presence of the overlying layer, 
for the sake of distinction. 

If the flowing layer is stratified, the velocity distribution in a dynamically 
possible flow with the same flow pattern is given by 

u = h’(p) U‘, v = h’(p) V’, (33) 
in which p now varies from one surface to another and the prime on h does not 

6 Fluid Mech. 36 
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Stagnant 
region 

Flowing region 

/ / / / / / /  / /  / /  / / / / / /  / /  / / / / 
k) 

FIGURE 2.  (a )  The plan view of a channel contraction. (b )  The elevation view of the cross- 
section along the centre plane. The fluid may be homogeneous or stratified. ( c )  The eleva- 
tion view of the same cross-section, with an overlying stagnant layer present. The flowing 
fluid may be homogeneous or stratified. 

FIGURE 3. A perspective view of the gravity jet with an overlying stagnant layer. Line A 
again marks the elevation of the flowing fluid far upstream. The fluid may be homogeneous 
or stratified. F.S. is the free snrface. 
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indicate differentiation. It is important to note that h‘(p) is not proportional to 
h(p) by the factor 

(Pt- P’)/Pt, 
where pt is now the density at  the top stream surface of the flowing liquid. Indeed, 
we have to determine h’(p) anew. To this end we need to write the Bernoulli 
equation for the stratified fluid, which is 

u2+v2+2g z+- p(2’)dz’---h = C(P),  [ :sa P 1 ( 3 4 )  

if h is again the depth of the flowing layer, p the density in a constant-density 
surface and, from the upstream conditions, 

C(P) = 29hoB’(P) 9 

in which (35) 

Note that po(zo) = p(z) . Again it can be shown that the assumption is dynamically 
permissible and that, with it, the Bernoulli equation becomes 

u2+ v2 + 2ghB’(p) = 2ghoB’(p) ,  ( 3 6 )  

or 

Thus 

u2 + v2 + 2g’h p ’ B ’ ( p )  = 2g’h0 7 Pt B’(p) . 
Pt-P Pt-P 

[h’(p)]2 = -J+B’(p). 
Pt-P 

Since B’(p) is not a constant multiple of B(p) given by (23 )  and (21 ) ,  h‘(p) is not 
proportional to h ( p )  given by (24 ) .  With h’(p) given by (38 ) ,  ( 3 3 )  gives u and v, 
with 

(39) 
Pt - P’ (U’, v‘) = ~ ( U ,  V ) .  

Pt 

Of course we do not have to use the flow (U’ ,  V’) parametrically and could have 
related u and v to U and V by inspection of (36 ) .  We have used the flow (U‘, V‘) 
chiefly to show more clearly that it is dangerous to apply (24 )  indiscriminately. 
Such an indiscriminate application would have given the wrong results 

u = h(p) U’, v = h(p) V’, 

with h (p )  given by ( 2 4 ) .  Again, it is tacitly assumed that the density far upstream 
in the flowing layer is obtainable from that in the stagnant liquid surrounding 
the jet by a stretching of the vertical length scale. This situation can be achieved 
as explained under example 1 ,  although the overlying fluid must be made level 
throughout by addition to the lower basin. 

Example 4. Flow through a channel expansion, with an overlying stagnant layer 

Figure 2 (a ,  c )  shows the plan and elevation (through the centre plane) views of a 
homogeneous liquid of density pt flowing through a channel. The density of the 
stagnant layer is again p’. The flow is supposed to be supercritical in the sense 
that the speed q is everywhere greater than (g’h)&, with g’ given by ( 3 2 ) .  Again 
the velocity distribution is given by ( 3 3 )  and ( 3 8 ) .  

6-2 



84 Chia-Shun Yih 

Example 5. Flow from a reservoir into a channel 

In  a previous paper (Yih 1958) it was shown that, if a stratified liquid flows 
horizontally from an infinitely large reservoir into an adjoining channel with the 
same horizontal bottom and the same horizontal cover, the velocity distribution 
in the channel, where the velocity becomes unidirectional, is given by 

y‘p u = constant. (40) 

For convenience of reference, we shall call (40) solution A, which is an inertial 
solution. I n  other words, it is true only if the acceleration is achieved by very 
low pressure downstream and gravity plays no role. That is to say, if we define 

W J(g’ho) 
the local Froude number as 

in which 

then the higher the minimum of the Froude number, the more nearly is the 
velocity distribution given by (40). At low Froude numbers (40), though dynam- 
ically possible, is not likely to describe what actually happens, since the flow 
is then strongly affected by gravity. With a free surface, acceleration is caused by 
descent of the fluid, and the velocity distribution in a channel joining a reservoir 
from which the fluid issues is determined by (24)) provided the downstream 
conditions allow such a flow. There is no contradiction of the two results. It 
matters a great deal whether there is a free surface, and when there is no free 
surface it matters a great deal how high the Froude number is. 

If the upper surface is free, the velocity distribution of a homogeneous fluid 
issuing subcritically from the reservoir into the channel will be free from waves, 
since no real characteristics exist for (16)) according to the shallow-water theory. 
The velocity distribution far downstream from the contraction will then be 
uniform. That is, U will be constant. For a stratified fluid, downstream conditions 
allowing, the asymptotic velocity distribution is given by (24). For convenience 
we shall call this velocity distribution solution B. We know also that it is possible 
to have a flowing layer of a homogeneous liquid under a stagnant layer of lighter 
density. If we use (33) and (38) to determine u, with U’ = constant, we obtain 
a flow of a stratified fluid, with an upper part of it stagnant from the reservoir 
into the channel. Since the upper layer is stagnant, it indeed does not matter 
whether the upper surface is covered or free. This solution, called solution C, is 
different from solutions A and B, even granted the same upstream density dis- 
tribution. But solution C is valid only if blocking has occurred, due to some 
obstacle downstream. The theorem is still true for the flowing region. 

In  concluding this section, we remark that there is a weakness in the gravity- 
jet examples. For the Kirchhoff jets the radius of curvature of the free streamline 
a t  the starting-point (as it leaves the wall) is zero. The same is also true for the 
case of y = 2. Professor M. J. Lighthill suggested to the writer in London that 
the sharp corner a t  the corresponding point in the hodograph plane guarantees 
that the curvature a t  the point in question is infinite. And this turns out to be 
generally true. Whereas an infinite curvature is no weakness in the Kirchhoff 
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and Chaplygin jets, it is a weakness for the gravity jets discussed here, for at  a 
point with infinite curvature the shallow-water assumption is violated. 

In  all examples the flow is supposed to have originated from a large reservoir, 
where the fluid is at  rest. 

4. Discussion 
The flows discussed so far belong to a special class. Because of their very special 

nature it is possible to go far in the description of their detailed features. But the 
downstream conditions must be consistent with any particular flow belonging 
to this special class before it can be expected to occur, as we have described, for 
instance, in example 1.  It is certainly desirable to discuss the situation that will 
prevail for a given density distribution in the upstream reservoir and one in the 
downstream reservoir connected with the upstream reservoir by an open channel. 
This will serve to show that other flows than the class just discussed can occur. 

If the free surface in the downstream reservoir is sufficiently lower than the 
free surface upstream, and the velocity determined by (24) is so fast that no 
internal waves, even of finite amplitude, can travel upstream, then the flows 
described by (24) will actually happen. This is true even if there are obstacles in 
the channel, before the obstacles are reached. The fastest speed of internal waves 
is of the order of the square root of the density gradient if the density gradient 
is continuous, or of the square root of the density difference A p  divided by the 
main density pm if there is a density discontinuity. If the density gradient and 
Ap/pm (if an interface is present) are all very small and the velocity ( U ,  V )  
determined from the free-surface drop not small, then the solution (24) is valid. 
If a stagnant layer is present, the solution given by (33) and (39) is valid under 
the same conditions. Obviously, if the free-surface drop is very small, internal 
waves can travel upstream, and the downstream stratification will have a far- 
reaching influence on the flow, which then cannot in general be described by (24), 
or by (33) and (39). 

This work has been jointly sponsored by the National Science Foundation and 
the Army Research Office (Durham). I am grateful to 8 referee of this paper for 
his criticisms, which have contributed to the improvement of this paper. 
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